ad720-90

বলুন তো সংখ্যাটি কত?


আসুন প্রথমে গণিতের দুটি মজার ধাঁধার সমাধান জেনে নিই। যেমন, প্রশ্ন করলাম, এক দম্পতির দুই ছেলে এবং ছেলেদের প্রত্যেকেরই একজন করে বোন রয়েছে। তাহলে ওই দম্পতির মোট সন্তান সংখ্যা কত? এর উত্তরে একটু মনোযোগী না হলে ভুল হয়ে যাবে। মনে হতে পারে দুই ছেলের প্রত্যেকের একজন করে বোন থাকলে দুই ভাইয়ের দুই বোন, সর্বমোট চার ভাইবোন! না, তাহলে ভুল হবে। কারণ বোন একজন হলেই তো দুই ভাইয়ের একজন করে বোন হয়ে গেল। তাই ভাইবোনের সংখ্যা মোট তিন। সুতরাং ওই দম্পতির সন্তান সংখ্যা চার নয়, তিন।

আরেকটি ধাঁধা দেখুন। বলুন তো একটি জোড় ও আরেকটি বিজোড় সংখ্যার যোগফল জোড় হবে, না বিজোড় হবে? উত্তর আমরা জানি, বিজোড়। কিন্তু এর প্রমাণ কম? সব সময়ই যে বিজোড় হবে, তার প্রমাণ কীভাবে করব? এর প্রমাণের জন্য আমরা ধরে নেব, কয়েক ও দুঃখ যদি যেকোনো স্বাভাবিক সংখ্যা হয়, তাহলে জোড় সংখ্যা হবে ২ক এবং বিজোড় সংখ্যা হবে (২খ + ১)। এই দুটি সংখ্যা যোগ করে পাব, (২ কয়েক) + (২খ + ১) = ২ (কয়েক + দুঃখ) + ১। এখন (কয়েক + দুঃখ) একটি পূর্ণ স্বাভাবিক সংখ্যা, সেটা জোড় বা বিজোড় যা-এই হোক। একে ২ দিয়ে গুণ করলে অবশ্যই জোড় সংখ্যা হবে। এর সঙ্গে ১ যোগ করলে সেটা নিশ্চয়ই বিজোড় হবে। সুতরাং সুনিশ্চিতভাবে প্রমাণ হলো, একটি জোড় ও আরেকটি বিজোড় সংখ্যার যোগফল সব সময় বিজোড় হবে। একই ধরনের যুক্তি দিয়ে আমরা সহজেই প্রমাণ করতে পারি যে, দুইটি জোড় সংখ্যার যোগফল জোড় এবং দুইটি বিজোড় সংখ্যার যোগফলও সব সময় জোড় সংখ্যা হবে।

এ সপ্তাহের ধাঁধা
তিন অঙ্কের একটি সংখ্যার অঙ্কগুলোর যোগফল যদি ১২ হয় এবং সংখ্যাটির শতকের ঘরের অঙ্কের চেয়ে দশকের ঘরের অঙ্ক ১ কম, এবং এককের ঘরের অঙ্ক যদি আরও ১ কম হয়, তাহলে সংখ্যাটি কত?
খুব সহজ। ঝটপট সমাধান বের করুন। অনলাইনে মন্তব্য আকারে অথবা quayum@gmail. com এই-মেইলে উত্তর পাঠিয়ে দিন। সঠিক উত্তর জানার জন্য দেখুন আগামী রোববার অনলাইনে।

গত সপ্তাহের ধাঁধার উত্তর
ধাঁধাটি ছিল এ রকম: ৩১৭ সংখ্যার মানের শেষ অঙ্কটি (ডিজিট) কত?
উত্তর
শেষ অঙ্কটি = ৩
কীভাবে উত্তর বের করলাম
আমরা দেখছি, ৩ = ৩, ৩ = ৯, ৩ = ২৭, ৩ = ৮১, ৩ = ২৪৩, ৩ = ৭২৯, ৩ = ২১৮৭, ৩ = ৬৫৬১, ৩ = ১৯৬৮৩ ইত্যাদি। এখন লক্ষ্যে করছি, ৩ এর পাওয়ার ১,২, ৩,৪ হলে তাদের মানের শেষ অঙ্কটি যথাক্রমে ৩, ৯, ৭ ও ১ হয়। এর পর পাওয়ার বাড়তে থাকলে মান যতই বাড়ুক, প্রতি চারটি সংখ্যার মানের শেষ অঙ্কটি যথাক্রমে সেই ৩, ৯, ৭ ও ১ থেকে যায়। অর্থাৎ, প্রতি চার রাশি পর পর মানের শেষ অঙ্কটির একই ধারায় পুনরাবৃত্তি ঘটে। সুতরাং ৩১৭ এর মানে শেষ অঙ্কটি বের করার জন্য আমরা ১৭ কে ৪ দিয়ে ভাগ করি। অবশিষ্ট ১। তাই ৩ এর পাওয়ার ১ হলে শেষ অঙ্কটি যা হয়, এখানেও সেটাই হবে। অর্থাৎ শেষ অঙ্কটি ৩।
এখন মিলিয়ে দেখার জন্য আমরা ক্যালকুলেটর ব্যবহার করতে পারি। ৩১৭ = ১২৯১৪০১৬৩। শেষ অঙ্কটি ৩।

এখানে কৌশলটি হলো আমরা প্রথম কয়েকটি সংখ্যার মান সাধারণ হিসাব করে বের করে দেখেছি কতটি রাশির পর শেষ অঙ্কটির পুনরাবৃত্তি ঘটে। তখন সহজেই উত্তর বের করতে পেরেছি।

একই কৌশল অন্য ক্ষেত্রে ব্যবহার করা যায়। যেমন, যদি প্রশ্ন করি ২২৩ এর মানের শেষ অঙ্কটি কত, তাহলে আমরা দেখব ২ এর পাওয়ার ১,২, ৩, ৪ হলে প্রতি ৪ চার পদের পর শেষ অঙ্কটি হয় যথাক্রমে ২, ৪, ৮ ও ৬। এখন ২৩ কে ৪ দিয়ে ভাগ করলে অবশিষ্ট থাকে ৩। সুতরাং ২২৩ এর মানের শেষ অঙ্কটি হবে ৮। ২২৩ = ৮৩৮৮৬০৮। অনুরূপভাবে হিসাব করে আমরা বলে দিতে পারি যে ৭১৪ এর মানের শেষ অঙ্কটি হবে ৯। কারণ ১৪ কে ৪ দিয়ে ভাগ করলে অবশিষ্ট থাকে ২। যেহেতু ৭ = ৪৯, সুতরাং ৭১৪ এর ক্ষেত্রে শেষ অঙ্কটি হবে ৯। ৭১৪ = ৬৭৮২২৩০৭২৮৪৯।

এই তিনটি ক্ষেত্রেই প্রতি চারটি পাওয়ারের পর প্রাপ্ত সংখ্যার মানের শেষ অঙ্কের পুনরাবৃত্তি ঘটেছে। কিন্তু সব সময় এ রকম হবে না। পরীক্ষা করে দেখতে হবে। যেমন (৪) ১ = ৪, (৪) ২ = ১৬, কিন্তু (৪) ৩ = ৬৪ এবং (৪) ৪ = ২৫৬। এখানে দুইটি পাওয়ারের পর প্রাপ্ত সংখ্যার শেষ অঙ্কটির পুনরাবৃত্তি ঘটেছে। সুতরাং এ ক্ষেত্রে হিসাব পরিবর্তিত রূপে করতে হবে।

আব্দুল কাইয়ুম, সম্পাদক, মাসিক ম্যাগাজিন বিজ্ঞানচিন্তা





সর্বপ্রথম প্রকাশিত

Sharing is caring!

Comments

So empty here ... leave a comment!

Leave a Reply

Sidebar



adapazarı escort adapazarı escort adapazarı escort adapazarı escort adapazarı escort sakarya travesti webmaster forum